加入收藏 | 设为首页 | 会员中心 | 我要投稿 成都站长网 (https://www.028zz.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营中心 > 搜索优化 > 正文

dsal 给定约束条件下排列 N 个项目的方式数

发布时间:2022-11-26 15:31:18 所属栏目:搜索优化 来源:网络
导读: 给定约束条件下排列 N 个项目的方式数
原文: . geeksforgeeks . org/给定约束下排列 n 个项目的方式数/
我们得到了总共 K 种不同颜色的 N 件商品。相同颜色的项目无法区分直线搜索方法,无约

给定约束条件下排列 N 个项目的方式数

原文: . geeksforgeeks . org/给定约束下排列 n 个项目的方式数/

我们得到了总共 K 种不同颜色的 N 件商品。相同颜色的项目无法区分直线搜索方法,无约束优化方法,约束优化方法,颜色可以从 1 到 K 编号,每种颜色的项目计数也给出为 k1、k2 等。现在,我们需要在所有可能的颜色的最后一项颜色 I 在最后一项颜色(i + 1)之前的约束下,一个接一个地排列这些项目。我们的目标是找出有多少种方法可以实现这一点。例:

Input : N = 3        
        k1 = 1    k2 = 2
Output : 2
Explanation :
Possible ways to arrange are,
k1, k2, k2
k2, k1, k2 
Input : N = 4        
        k1 = 2    k2 = 2
Output : 3
Explanation :
Possible ways to arrange are,
k1, k2, k1, k2
k1, k1, k2, k2
k2, k1, k1, k2 

我们可以用动态规划来解决这个问题。让 dp[i]存储排列第一个 I 色项目的方法数量。对于一个彩色项目,答案将是一,因为只有一种方法。现在让我们假设所有项目都在一个序列中。现在,要从 dp[i]转到 dp[i + 1],我们需要在最末端放置至少一个颜色项(i + 1),但是其他颜色项(i + 1)可以在序列中的任何位置。排列颜色项(i + 1)的方法的数量是(k1 + k2)的组合..可以表示为(k1 + k2)的(k(I+1)–1)上的+ki+k(I+1)–1..+ki+k(I+1)–1)C(k(I+1)–1)。在这个表达式中,我们减去了一,因为我们需要在最后放一项。在下面的代码中,首先我们已经计算了组合值,您可以从这里了解更多信息。之后,我们循环所有不同的颜色,并使用上述关系计算最终值。

C++

// C++ program to find number of ways to arrange
// items under given constraint
#include 
using namespace std;
// method returns number of ways with which items
// can be arranged
int waysToArrange(int N, int K, int k[])
{
????int C[N + 1][N + 1];
????int i, j;
????// Calculate value of Binomial Coefficient in
????// bottom up manner
????for (i = 0; i <= N; i++) {
????????for (j = 0; j <= i; j++) {
????????????// Base Cases
????????????if (j == 0 || j == i)
????????????????C[i][j] = 1;
????????????// Calculate value using previously
????????????// stored values
????????????else
????????????????C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]);
????????}
????}
????// declare dp array to store result up to ith
????// colored item
????int dp[K];
????// variable to keep track of count of items
????// considered till now
????int count = 0;
????dp[0] = 1;
????// loop over all different colors
????for (int i = 0; i < K; i++) {
????????// populate next value using current value
????????// and stated relation
????????dp[i + 1] = (dp[i] * C[count + k[i] - 1][k[i] - 1]);
????????count += k[i];
????}
????// return value stored at last index
????return dp[K];
}
// Driver code to test above methods
int main()
{
????int N = 4;
????int k[] = { 2, 2 };
????int K = sizeof(k) / sizeof(int);
????cout << waysToArrange(N, K, k) << endl;
????return 0;
}

Java 语言(一种计算机语言,尤用于创建网站)

// Java program to find number of ways to arrange
// items under given constraint
class GFG
{
????// method returns number of ways with which items
????// can be arranged
????static int waysToArrange(int N, int K, int[] k)
????{
????????int[][] C = new int[N + 1][N + 1];
????????int i, j;
????????// Calculate value of Binomial Coefficient in
????????// bottom up manner
????????for (i = 0; i <= N; i++)
????????{
????????????for (j = 0; j <= i; j++)
????????????{
????????????????// Base Cases
????????????????if (j == 0 || j == i)
????????????????{
????????????????????C[i][j] = 1;
????????????????}
????????????????// Calculate value using previously
????????????????// stored values
????????????????else
????????????????{
????????????????????C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]);
????????????????}
????????????}
????????}
????????// declare dp array to store result up to ith
????????// colored item
????????int[] dp = new int[K + 1];
????????// variable to keep track of count of items
????????// considered till now
????????int count = 0;
????????dp[0] = 1;
????????// loop over all different colors
????????for (i = 0; i < K; i++)
????????{
????????????// populate next value using current value
????????????// and stated relation
????????????dp[i + 1] = (dp[i] * C[count + k[i] - 1][k[i] - 1]);
????????????count += k[i];
????????}
????????// return value stored at last index
????????return dp[K];
????}
????// Driver code
????public static void main(String[] args)
????{
????????int N = 4;
????????int[] k = new int[]{2, 2};
????????int K = k.length;
????????System.out.println(waysToArrange(N, K, k));
????}
}
// This code has been contributed by 29AjayKumar

Python 3

# Python3 program to find number of ways
# to arrange items under given constraint
import numpy as np
# method returns number of ways with
# which items can be arranged
def waysToArrange(N, K, k) :
????C = np.zeros((N + 1, N + 1))
????# Calculate value of Binomial
????# Coefficient in bottom up manner
????for i in range(N + 1) :
????????for j in range(i + 1) :
????????????# Base Cases
????????????if (j == 0 or j == i) :
????????????????C[i][j] = 1
????????????# Calculate value using previously
????????????# stored values
????????????else :
????????????????C[i][j] = (C[i - 1][j - 1] +
???????????????????????????C[i - 1][j])
????# declare dp array to store result
????# up to ith colored item
????dp = np.zeros((K + 1))
????# variable to keep track of count
????# of items considered till now
????count = 0
????dp[0] = 1
????# loop over all different colors
????for i in range(K) :
????????# populate next value using current
????????# value and stated relation
????????dp[i + 1] = (dp[i] * C[count + k[i] - 1][k[i] - 1])
????????count += k[i]
????# return value stored at last index
????return dp[K]
# Driver code
if __name__ == "__main__" :
????N = 4
????k = [ 2, 2 ]
????K = len(k)
????print(int(waysToArrange(N, K, k)))
# This code is contributed by Ryuga

C

// C# program to find number of ways to arrange
// items under given constraint
using System;
class GFG
{
????// method returns number of ways with which items
????// can be arranged
????static int waysToArrange(int N, int K, int[] k)
????{
????????int[,] C = new int[N + 1, N + 1];
????????int i, j;
????????// Calculate value of Binomial Coefficient in
????????// bottom up manner
????????for (i = 0; i <= N; i++)?
????????{
????????????for (j = 0; j <= i; j++)
????????????{
????????????????// Base Cases
????????????????if (j == 0 || j == i)
????????????????????C[i, j] = 1;
????????????????// Calculate value using previously
????????????????// stored values
????????????????else
????????????????????C[i, j] = (C[i - 1, j - 1] + C[i - 1,? j]);
????????????}
????????}
????????// declare dp array to store result up to ith
????????// colored item
????????int[] dp = new int[K + 1];
????????// variable to keep track of count of items
????????// considered till now
????????int count = 0;
????????dp[0] = 1;
????????// loop over all different colors
????????for (i = 0; i < K; i++) {
????????????// populate next value using current value
????????????// and stated relation
????????????dp[i + 1] = (dp[i] * C[count + k[i] - 1, k[i] - 1]);
????????????count += k[i];
????????}
????????// return value stored at last index
????????return dp[K];
????}
????// Driver code?
????static void Main()
????{
????????int N = 4;
????????int[] k = new int[]{ 2, 2 };
????????int K = k.Length;
????????Console.Write(waysToArrange(N, K, k));
????}
}
// This code is contributed by DrRoot_

服务器端编程语言(Professional Hypertext Preprocessor 的缩写)

<?php
// PHP program to find number of
// ways to arrange items under
// given constraint
// method returns number of ways
// with which items can be arranged
function waysToArrange($N, $K, $k)
{
????$C[$N + 1][$N + 1] = array(array());
????// Calculate value of Binomial?
????// Coefficient in bottom up manner
????for ($i = 0; $i <= $N; $i++)
????{
????????for ($j = 0; $j <= $i; $j++)
????????{
????????????// Base Cases
????????????if ($j == 0 || $j == $i)
????????????????$C[$i][$j] = 1;
????????????// Calculate value using
????????????// previously stored values
????????????else
????????????????$C[$i][$j] = ($C[$i - 1][$j - 1] +
??????????????????????????????$C[$i - 1][$j]);
????????}
????}
????// declare dp array to store
????// result up to ith colored item
????$dp[$K] = array();
????// variable to keep track of count
????// of items considered till now
????$count = 0;
????$dp[0] = 1;
????// loop over all different colors
????for ($i = 0; $i < $K; $i++)
????{
????????// populate next value using
????????// current value and stated relation
????????$dp[$i + 1] = ($dp[$i] * $C[$count +
????????????????????????$k[$i] - 1][$k[$i] - 1]);
????????$count += $k[$i];
????}
????// return value stored at
????// last index
????return $dp[$K];
}
// Driver code
$N = 4;
$k = array( 2, 2 );
$K = sizeof($k);
echo waysToArrange($N, $K, $k),"\n";
// This code is contributed by jit_t
?>

java 描述语言

???

输出:

3

本文由 乌卡什·特里维迪 供稿。如果你喜欢 GeeksforGeeks 并想投稿,你也可以使用write.geeksforgeeks.org写一篇文章或者把你的文章邮寄到 contribute@geeksforgeeks.org。看到你的文章出现在极客博客主页上,帮助其他极客。如果发现有不正确的地方,或者想分享更多关于上述话题的信息,请写评论。

(编辑:成都站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!