加入收藏 | 设为首页 | 会员中心 | 我要投稿 成都站长网 (https://www.028zz.cn/)- 科技、云开发、数据分析、内容创作、业务安全!
当前位置: 首页 > 站长资讯 > 动态 > 正文

核聚变是驱动恒星引擎那么人造聚变反应堆是怎样运行工作的呢

发布时间:2023-08-30 10:00:33 所属栏目:动态 来源:未知
导读:   在恒星内发生的一种称为"核聚变"的过程即为它们的发动机,对于寻找可持续的清洁能源而言它被称为是"终极答案"——在一个成熟的聚变反应堆中,能量将以安全而持续的方式释放出
  在恒星内发生的一种称为"核聚变"的过程即为它们的发动机,对于寻找可持续的清洁能源而言它被称为是"终极答案"——在一个成熟的聚变反应堆中,能量将以安全而持续的方式释放出来,能够长期稳定供应整个社会使用。不幸的是,这项技术仍然是科幻小说的素材。这让许多读者不禁要问,“什么是核聚变,人造聚变反应堆是如何工作的”?
 
  裂变与聚变
 
  在我们进入聚变之前,我们先来谈谈裂变。核裂变与核聚变相反,它是分裂原子的过程。当原子分裂时,无论是通过放射性衰变(放射性)还是通过核连锁反应(核弹),它们都会释放出大量的能量和电离辐射。核电站利用这种裂变能为全世界11%的人口提供电力。
 
  聚变是将两个或多个原子结合起来创造新东西的过程。当两个质量比较低的原子核发生这种情况时,这个过程会产生大量的能量。当原子核与比铁重的质量结合时,它实际上消耗能量。后者是对恒星的死刑判决,当一颗恒星开始在其核心融合铁时,它就要变成超新星了。
 
  现在,我们只讨论前者,融合能产生能量的较轻的原子核。这些较轻的原子核的行为可能与我们的直觉相反。当我们试图把两件事推到一起时,这需要工作和精力去做。当我们试图将原子融合在一起时,它们实际上想在原子足够接近后粘在一起。当两个原子粘在一起并融合成新的东西时,它们释放出大量的能量。
 
  在核聚变之后,实际上需要一点能量才能把它们维持在融合状态。不幸的是,由于氢原子具有相同的电荷,所以当它们彼此靠近时,就会相互排斥。这有点像迷你高尔夫——如果你想把球放在一个陡峭的斜坡上的洞里,要把球挪到洞附近需要一点功夫。但一旦球越过了洞的边缘,它就会立即下沉并弹回原位,它“回家”。这要归功于强大的核力,它能使原子“粘在一起”。
 
  更大、更重的原子的工作方式有点不同。它们只是勉强保持在一起,丝毫的扰动都会使它们碎裂并导致能量释放。这就是我们所说的放射性,这种效应用来加热水,形成蒸汽,可以驱动涡轮机,为核电站发电。
 
  两种融合方式
 
  核聚变研究已经进行了几十年。虽然进展缓慢,但近年来取得了一些令人振奋的进展。虽然实现核聚变的方法有近十几种,但目前有两种设计处于领先地位,最有希望获得成功。它们是惯性约束聚变和磁约束聚变。
 
  惯性约束融合
 
  描述惯性约束聚变的一种术语称为激光聚变。这是一个名副其实的描述,因为这正是它的本质。几十个世界上最强大的激光被激发,然后在系统中被放大,然后聚焦到一个小目标上。目标通常是一(10毫克)氘 - 氚小球。激光以这样的力量、速度和能量撞击,压缩颗粒并在其有时间通过传统方法使其自身破裂之前立即加热。这个过程发生得太快(在10^(-11)到1010^(-9)秒之间),以至于离子被自己的惯性卡住,这就是惯性约束聚变这个名字的由来。
 
  一旦氘 - 氚小球达到一定的压力和温度,就会实现“点火”。“点火”是指小球开始连锁反应的过程,这种连锁反应导致物质开始融化,从而产生大量的能量。一个10毫克的氘 - 氚小球实现聚变,相当于燃烧一整桶石油。
 
  小球本身是氘和氚的一对一混合物,氘 - 氚都是氢的同位素。全球氘的供应实际上是无限的,它可以从各种形式的海水中蒸馏出来,每升海水中含有33毫克的氘。另一方面,的却难以获得,它是一种快速衰变的氢元素,在自然界中极其罕见。全球氚的总供应量约为45磅。幸运的是,它可以在核聚变过程中产生。在聚合中子撞到堆芯外壳上的锂上之时,就会发生所谓的‘核反应’,而产生的产物就是更多的氚。因此,如果要实现大规模商用化的聚变能量计程式( ICF)并建立反应堆,就需要自己生产出足够的氚来。
 
  虽然实验性的激光聚变确实能实现“点火”,但问题是从中获得的能量比你投入的能量要多。激光所需的能量相当可观,而对于加利福尼亚州的美国国家“点火”设施(NIF),他们需要将产量提高100倍,才能达到收支平衡。另一个问题是小球本身;如果激光击中小球,而小球没有被均匀地压缩和加热,不仅会有显著降低能量增益的风险,还有可能根本无法实现“点火”。
 
  磁阻融合
 
  磁约束聚变比激光聚变更奇特。实现聚变的过程是使用强磁场来挤压、加热和控制过热的等离子体。等离子体在环形反应器中循环,其中附加的加热等离子体的方法也在辅助加热等离子。 电流也流过等离子体,在某些情况下,还会发生微波,中性束注入和射频加热。 目的是使等离子体尽可能热以引发聚变,温度需要达到或超过1.5亿摄氏度。
 
  在这两种类型的聚变系统中,磁约束被认为是更成熟的技术,可能是第一种实现核聚变净能量增益的技术。然而,它也不是没有自己的挑战。为了达到自我维持聚变所需的温度,必须精确控制等离子体。这是一个技术难题,因为过热的等离子体难以控制。想要控制它,就像把水放在手掌里,然后把它塑造成某种东西。水要么从你的手上漏出来,要么立即失去形状,形成杂乱无章的水坑。将等离子体保持在你想要的位置,如何使用它,并防止它接触反应堆壁,是物理学家面临的最大挑战之一。
 
  等离子体中的杂质和电流或磁场中的不稳定性也会对物体造成干扰,从而阻止聚变的发生。核聚变反应堆壁也有中子损伤的危险,聚变导致中子轰击反应堆壁,并导致金属变弱、变脆并最终腐烂。这有利于氚的“繁殖”,但对本来就很脆弱反应堆壁却不利。
 
  聚变能有什么好处?
 
  正如我们在这篇文章的开头提到的,聚变力有潜力为我们提供几乎无限的能量。然而,好处并不止于其止。除了能源生产外,为反应堆提供动力所需的燃料量很小,这些燃料可以从海水中蒸馏获得。聚变反应堆产生的辐射也比我们生活在地球上所经历的自然背景辐射少。
 
  世界上近70%的能源来自燃烧煤炭、石油和天然气。由于核聚变不涉及燃烧,所有的污染空气源和废物几乎会在一夜之间消失。尽管核聚变反应堆有一些核废料,但与典型裂变反应堆在其使用寿命内产生的废料量相比,微不足道。核聚变产生的高风险废物也不是高水平,也不是武器级材料。核聚变仅产生少量放射性废物,且只在大约50年内保持着危险的放射性,因此处置问题就不那么令人担忧。也没有导致放射性爆炸释放(如切尔诺贝利)的熔毁风险。这是因为聚变使用的燃料量很小,不可能发生失控反应, 燃料在进行其他操作之前会自行燃烧。
 
  核聚变能力的另一个好处是,它可用于星际太空旅行。
 
  冷聚变?
 
  据推测,冷聚变是一种核反应,可能会在室温附近发生。过去几十年来,有那么几个人声称实现了“冷聚变”,但到目前为止,还没有人能够用自己的设备在自己的实验室再现“冷聚变”。实现冷聚变的可能性很小的原因之一是库仑势垒。在恒星的核心和我们的实验聚变反应堆中,由于施加了巨大的热和压力,这个屏障很容易被克服。没有这些极端环境,持续的核聚变是不可能的。因此,我们需要找到一种方法来解决这个问题。

(编辑:成都站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章