传统企业在大数据分析上所面临的关键问题
实现数据驱动有两个关键环节:一是数据采集,二是数据分析。对于传统企业来说,往往是这两点都不太具备条件。? 对于许多传统企业来说,即使经历了信息化建设的过程,但限于条件,收集的数据类型也比较有限。一般是进销存的数据有,财务数据有,但其他数据就比较缺失了。有些企业是有 CRM 系统,但许多客户的信息都是死的,并没有实时更新和激活。对于一些财务和销量数据,也只是有一些宏观的总数,没有太多的维度分析。生产经营的目标,往往取决于老板拍脑袋,完全没有数据做决策的思维。我们这里看看就拿一个线下零售店来说,它和线上电商网站比,到底少了哪些数据。对于店铺卖了多少货,买了多少钱,每个 SKU 的具体销售情况,这些是可以获取到的。但是,有多少人看了某个商品,有多少人摸了某个商品,有多少人是回头客,像这些信息都是没有的,但电商网站就可以获取的到,就可以基于这些信息做出更精准的判断。? 我们再来说说为什么要做数据分析。在上世纪 80 年代的时候,曾经发生过商店买的冰箱门已经坏了,然后问顾客要不要买,如果不买,就让下一个顾客买,还有更多的人排队。那个时候是商品匮乏,供应不足,销售的问题根本不需要考虑,主要矛盾是把商品生产出来。到了 2000 年之后,像家电类的商品,供大于求的时候,就开始铺广告,建销售体系,只要这些做好,产品就可以卖出去了,归根到底是需求还在。可最近这几年,人口红利渐渐没了,竞争变的更激烈了,导致人力成本变高和供大于求,这样赚钱就没那么容易了,靠以前那种堆人的思路玩不转了,必须考虑精细化运营。对于铺的广告,不是说央视上播放了,看着挺气派,这就成功了,还是要看实际转化效果如何。对于潜在客户及已有客户,分析他们的特点,制定针对性的营销策略和提供合适的服务,这些都需要数据分析的支持。? 二是增加传感器(Sensor),提升数据采集的能力。有个朋友的公司是做视频监控的,他们做的监控系统,目前都可以做到识别老人摔倒行为、工人是否带安全帽、参观者的性别等。虽然现在还相对比较初级,但可以预见的是以后线下的所有行为都能够被采集到,各种各样的传感器都会被生产出来。Google 的无人驾驶汽车,周围装了一圈的传感器,每秒钟产生 2.5 GB 的数据,实现自动驾驶。以后可能通上电的设备,都会带有传感器,采集到的数据也会很巨大。正是基于这点判断,我把公司起名叫 Sensors Data(神策数据,音译),我觉得未来就是传感器时代。? 说了这么多问题,那到底有没有传统企业在大数据分析这块做的好的呢?我这里讲个餐饮业的案例。盈客在线是一家为餐饮业提供 S-CRM 的公司,会帮着餐饮品牌店做会员营销方案,比如会开展会员日这样的活动,某些菜品针对会员客户半价优惠。那这里问题就来了,这样会不会导致会员们只会在会员日过来用餐,其他时间就过来的少了?单凭猜测是不行的,我们还是要看数据。于是盈客在线的数据工程师针对一家品牌店做了用户留存分析,就是看有会员日活动的会员店,和没有会员活动的会员店,在用户留存上有什么差异?结果分析发现,有会员日活动的留存,要明显超过那些没有会员日活动的店家用户留存。 End. 作者:桑文锋 (中国统计网特邀认证作者) 本文为中国统计网原创文章,需要转载请联系中国统计网(小编微信:itongjilove),转载时请注明作者及出处,并保留本文链接。 (编辑:成都站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |